
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

Radio Group Focus

QWhen I try and set focus to a
radio group, with the inten-

tion of focusing on the current
radio button within it, the focus
disappears. What seems to happen
is that the radio group itself takes
focus. I would explicitly set focus to
one of its radio buttons, but they
are represented by the Items
property, a TStrings object, and so
I can’t find a window handle. What
do I do?

AWell, when you get the group
box focused, a press of the

Tab key sets focus on the current
radio button. You need a program
statement that achieves the same
thing. Something like this:

RadioGroup1.SetFocus;
SelectNext(ActiveControl,
  True, True);

SelectNext focuses on the next
component on the form in the tab
order. It appears the radio buttons
come after the group box.

Drag And Drop On Grid Cells

QI have a DBGrid that I would
like to drag and drop a value

onto. It works fine when I drop the
value into the currently selected
row; however, I would like to be
able to drop it into the record the
drag cursor is over when the
mouse button is released. Is there
any way to change the selected
record in the grid based on the
location of the drag cursor?

ATo change the record
normally, you click with the

mouse. Here is one possible
solution, where the OnDragDrop
event handler simulates a mouse

click at the cursor position. Rather
than limit this answer to a TDBGrid,
I have also implemented a handler
for a TStringGrid. In my example
project (DRAGDROP.DPR on the
disk) there is a string grid and a
database grid, which will both
receive a value dragged over from
a file list box (SourceControl). The
two event handlers are shown in
Listing 1.

The string grid writes a value to
a cell using the two-dimensional
string array property, Cells, using
Selection to identify the currently
selected cell. The database grid
uses the SelectedField property to
write a value to the target field: it
also ensures the dataset the field
belongs to is in Edit mode first. The
OnDragOver method is simply:

Accept :=
  Source = SourceControl;

256 Colour TImages

QWhen I set the Stretch
property of a TImage which

contains a 256 colour bitmap to
True, its colours get mashed. Is this
a VCL bug, and is there a fix?

AI have heard that this does
not occur on some video

drivers, and so the problem could
be a TImage problem or a Windows
video driver feature. Rather than
decide who is to blame, let’s see if
we can fix it.

There are two approaches here,
and both involve using an interme-
diate bitmap to copy the TImage’s
bitmap onto. It seems that when
the bitmap is copied onto a canvas
directly, the palette is not fixed up,
or ‘realized’ correctly, however if it
is copied onto another bitmap, it
magically is. If you are brave
enough to modify the VCL source
(which you may not even have, de-
pending on what products you
have purchased), you can try the
first approach, otherwise you can
use the substitute component pre-
sented below.

First Method. Find the
EXTCTRLS.PAS file and locate the
TImage.Paint method. Add to it a
second local variable:

Bmp: TBitmap;

Now go down to the end of the
method and find:

procedure TForm1.StringGridDragDrop(Sender, Source: TObject; X, Y: Integer);
begin
  if Source <> SourceControl then Exit;
  with Sender as TStringGrid do begin
    Perform(wm_LButtonDown, 0, MakeLong(X, Y));
    Perform(wm_LButtonUp,   0, MakeLong(X, Y));
    Cells[Selection.Left, Selection.Top] := SourceControl.FileName;
  end;
end;

procedure TForm1.DBGridDragDrop(Sender, Source: TObject; X, Y: Integer);
begin
  if Source <> SourceControl then Exit;
  with Sender as TDBGrid do begin
    Perform(wm_LButtonDown, 0, MakeLong(X, Y));
    Perform(wm_LButtonUp,   0, MakeLong(X, Y));
    SelectedField.DataSet.Edit;
    SelectedField.AsString := SourceControl.FileName;
  end;
end;

➤ Listing 1

54 The Delphi Magazine Issue 5



with inherited Canvas do
  StretchDraw(Dest,
    Picture.Graphic);

Before these lines insert the block
of code in Listing 2. If this compiles
okay, copy the resultant
EXTCTRLS.DCU file into your
DELPHI\LIB directory (backing up
the old one first) and then rebuild
the component library (Options |
Rebuild Library).

You can see that if the Stretch
property is set, the code copies the
picture to another bitmap before
drawing it on the image’s canvas.
The use of inherited against a prop-
erty in the original and modified
code is worth exploring here, as it
causes a headache when
attempting to put similar code in a

new component. The TImage is
derived from a TGraphicControl
which has a Canvas property, refer-
ring to the screen space where it
will draw. TImage redefines Canvas
to refer to the bitmap’s canvas
instead. When it comes to draw it-
self in the Paint method, it must use
the word inherited to access the
real canvas, declared in the
TGraphicControl class.

Unfortunately there is no way for
a class inherited from TImage to get
access to this proper canvas, two
levels up the inheritance tree, so
we have to use other sneaky
devices to achieve the goal.

Second Method. The TNewImage
component in Listing 3 (the file
IMAGE2.PAS) traps the wm_Paint
message (well it’s not a real mes-
sage: a TImage does not have a
window handle, but let’s not get
too involved here) and obtains a
Windows device context handle
from the message parameters. It
uses this to set up a temporary
canvas that can be used by the new
Paint method. Notice that to allow
the entirety of the component to be
seen at design time, the new code
only executes if a stretched bitmap
is present. In other cases, the usual
surrounding dashed line will be
seen.

Using this approach has a side
benefit, as now things other than

if Stretch then begin
  Bmp := TBitmap.Create;
  try
    Bmp.Height := Picture.Height;
    Bmp.Width  := Picture.Width;
    Bmp.Canvas.Draw(
      0, 0, Picture.Graphic);
    inherited Canvas.StretchDraw(
      Dest, Bmp);
  finally
    Bmp.Free;
  end;
end
  else

➤ Listing 2

bitmaps can be stretched as well:
try and load an icon or a metafile
into a TImage and set the Stretch
property to True. In case you have
lots of TImage components in use
that you want to replace with
TNewImages, but can’t face the or-
deal of deleting the originals, add-
ing TNewImages, setting the Stretch
property and loading a Picture,
here is an alternative. Load your
form as a text file using File | Open
File, and choosing Form Files from
the file types combo box. Now do
a search and replace of TImage with
TNewImage and close the file. Finally
open the form’s unit file normally
and do the same search and
replace through the form class
definition. Problem solved.

This approach comes in very
handy if you start working on a
TTable component, use the Fields
Editor to set up all the field objects
and start writing code, only to real-
ise that you should have started
with a TQuery. If you were to delete
the TTable, all the field objects
would also be deleted. It is much
easier to change the definition of a
TTable to be a TQuery and alter the
differing property (ie change the
TableName property to be an SQL
property formatted appropriately
– you can find what the right format
is by examining an existing TQuery
component in text mode).

unit Image2;
interface
uses
  SysUtils, WinTypes, WinProcs, Messages, Classes,
  Graphics, Controls, Forms, Dialogs, ExtCtrls;
type
  TNewImage = class(TImage)
  private
    FCanvas: TCanvas;
    FBmp: TBitmap;
  public
    constructor Create(AOwner: TComponent); override;
    destructor Destroy; override;
    procedure WMPaint(var Msg: TWMPaint);
      message wm_Paint;
    procedure Paint; override;
  end;
procedure Register;
implementation

constructor TNewImage.Create(AOwner: TComponent);
begin
  inherited Create(AOwner);
  { Can’t draw on the TImage canvas - that turns out to
    be the bitmap object’s canvas }
  FCanvas := TCanvas.Create;
  { Temporary bitmap to cause palette realization }
  FBmp := TBitmap.Create;
end;

destructor TNewImage.Destroy;
begin

  FBmp.Free;
  FCanvas.Free;
  inherited Destroy;
end;

procedure TNewImage.WMPaint(var Msg: TWMPaint);
begin
  { Identify what the real canvas is }
  FCanvas.Handle := Msg.DC;    
  { Do normal stuff, like call Paint }  
  inherited;    
  { Now forget about it }     
  FCanvas.Handle := 0;          
end;

procedure TNewImage.Paint;
begin
  { Only do new stuff if it is a stretched image }
  if (Picture.Graphic = nil) or not Stretch then
    inherited Paint
  else begin
    FBmp.Height := Picture.Height;
    FBmp.Width  := Picture.Width;
    FBmp.Canvas.Draw(0, 0, Picture.Graphic);
    FCanvas.StretchDraw(ClientRect, FBmp);
  end
end;

procedure Register;
begin
  RegisterComponents(’Samples’, [TNewImage]);
end;
end.

➤ Listing 3

56 The Delphi Magazine Issue 5



Clipboard Stuff

QHow can I implement generic
cut/copy/paste menubar

functionality right across TEdit,
TDBEdit, TStringGrid, TDBGrid,
TMemos and TDBMemo controls?

ATo make common code work
across these components

we need some functionality com-
mon to them all. This is ok for edits
and memos, as they’re all based at
some point on TCustomEdit, but
what about the grids?

Well, when it comes to editing on
a grid the component makes use of
a specialised in-place edit control
called a TInPlaceEdit. This is also
based on TCustomEdit, and so we
need to know how to get a handle
on this object, so we can call its
clipboard-type functionality.

The code in Listing 4 contains
two routines used in the program
shown in the screenshot. When
the edit menu is invoked, the
EditMenuClick event handler is
invoked to identify if there is a
TCustomEdit derivative around to
work with. If the active component
is an edit or memo, then the target
has been found. However if it is a
grid, it is more involved. Even when
a grid has an in-place editor active,
the grid is still the active compo-
nent as far as the form is
concerned. If a TCustomGrid is ac-
tive, the code cycles through its
components until it finds a visible
TInPlaceEdit.

When a TCustomEdit descendant
is located it is assigned to a data

procedure TForm1.EditMenuClick(Sender: TObject);
var
  Loop: Byte;
begin
  EditCtl := nil;
  if ActiveControl is TCustomEdit then
    EditCtl := ActiveControl as TCustomEdit
  else if (ActiveControl is TCustomGrid) then
    with TCustomGrid(ActiveControl) do
      { When editing in a grid, the grid is the active
        control not the in-place editor, so we need to find
        the editor in the grid. If grid owns any controls,
        cycle through them checking for editor}
      if ControlCount > 0 then
        for Loop := 0 to Pred(ControlCount) do
          if Controls[Loop] is TInPlaceEdit then
            { Editor is visible when being used }
            if Controls[Loop].Visible then begin
              EditCtl := TInPlaceEdit(Controls[Loop]);
              Break;
            end;
  if Assigned(EditCtl) then begin
    Undo1.Enabled := 
      Bool(EditCtl.Perform(em_CanUndo, 0, 0));

    Cut1.Enabled := EditCtl.SelLength > 0;
    Copy1.Enabled := Cut1.Enabled;
    Paste1.Enabled := ClipBoard.AsText <> ’’;
    Delete1.Enabled := EditCtl.SelLength > 0;
  end else begin
    Undo1.Enabled := False;
    Cut1.Enabled := False;
    Copy1.Enabled := False;
    Paste1.Enabled := False;
    Delete1.Enabled := False;
  end;
end;
procedure TForm1.MenuClick(Sender: TObject);
begin
  if Assigned(EditCtl) then with EditCtl do
    case (Sender as TComponent).Tag of
      1: Perform(em_Undo, 0, 0);
      2: CutToClipBoard;
      3: CopyToClipBoard;
      4: PasteFromClipBoard;
      5: ClearSelection;
    end;
end;

➤ Listing 4

field called EditCtl which I have
added to the form’s declaration. If
an edit control is found, the various
menu items need to be enabled or
disabled, depending on the current
state of both it and the clipboard;
ie whether there is any selected
text, if there is any text in the
clipboard, etc.

All the menu items that hang off
the Edit menu use the same event
handler. To distinguish between
the menu item that triggered the
event, they have all had their Tag
properties set to unique values.
Providing EditCtl refers to a valid
object, the code performs a stand-
ard edit control clipboard type of
operation, such as CutToClipBoard
or ClearSelection. The one excep-
tion is for the Undo menu item,
which uses a windows message to
achieve its goal instead.

Updates From Issue 4
Several readers contacted us with
more elegant or efficient ways of
doing a left zero fill. Jack Bakker
and Niek de Ruitjer reminded us
about Delphi’s Format routine,
which will  do the job quite nicely:

Format(’%.5d’, [123]); {00123}

See the online help for ‘Format
Strings’ for more details (the
features are quite comprehensive
so it should meet most needs).

Also, Alan Gregory send in a less
dirty solution for updating a file
listbox. Simply call its Update
method.

Acknowledgements
Thanks to Roy Nelson of Borland
for the TDBImage VCL fix and idea for
the TDBImage replacement.

January 1996 The Delphi Magazine 57


	Radio Group Focus
	Drag and Drop On Grid Cells
	256 Colour Images
	Clipboard Stuff
	Updates From Issue 4
	Acknowledgements

